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TECHNICAL MEMORANDUM

COUPLED LOADS ANALYSIS FOR SPACE SHUTTLE PAYLOADS

I. INTRODUCTION

This report describes a method for determining the transient response of, and the resultant
loads in, a system exposed to predicted external forces. For this example, the system consists of

four racks mounted inside of a space station resource node module (SSRNMO) which is mounted in

the payload bay of the space shuttle. The applied predicted external forces are Johnson Space Center

(JSC) forcing functions which envelope worst-case forces applied to the shuttle during lift-off and

landing. This analysis, called a coupled loads analysis, is used to:

1. Couple the payload and shuttle models together

2. Determine the transient response of the system

3. Recover payload loads, payload accelerations, and payload to shuttle interface forces.

II. THEORY

A. Craig-Bampton Reduction

1. Models

A finite element model can be thought of as having both internal degrees of fleedom (DOF's)

and boundary DOF's where boundary DOF's connect the model with other models and internal

DOF's do not (fig. 1). The models (mass and stiffness matrices) for the racks and the node were
supplied by Boeing in the Craig-Bampton (CB) format, and the shuttle model was previously built
and converted to the CB format. The CB format is the result of a CB reduction where the problem is

reduced in size by ignoring the effects of some of the mode shapes. The size of the problem is

reduced to the number of boundary DOF's plus the number of retained mode shapes from an eigen-

value problem. Because we retain only a portion of the modes for the substructures and for the entire

shuttle system model, and since the reduced model is in a more diagonalized form, the problem is

significantly reduced. The following is a discussion of the CB reduction method.

The motion of the internal DOF's [Xt] can be described as the combination of (1) the internal

motion with respect to a rigid boundary (all boundary DOF's are constrained), and (2) the internal

motion due to the movement of the boundary and the relative deflection of the boundary DOF's (the

boundary DOF's are subjected to different constraints).



MODEL

A

interior dof

0 MOOEL

0 0 B

f

Figure 1. Generic coupled systems.

2. Constrained Modes

The f'trst type of motion described above can be analyzed by constraining the boundary
DOF's (making a rigid boundary) and then finding the normal modes or "constrained modes" as
follows:

1. Constrain the boundary DOF by zeroing out the boundary DOF rows and columns in the
mass (M) and stiffness (K) matrices.

2. Solve the eigenvalue problem (K-w2M)PHIn = 0 to get the constrained modes PHIn

(eigenvectors), and system natural frequencies w (square root of eigenvalues). Only the modes

below a specified frequency, called a cutoff frequency, are considered significant to the problem and

are retained in PHIn. Reducing out these unnecessary mode shales reduces the size of the problem
without losing much accuracy. The determination of the cutoff frequency will be discussed later.

The internal displacements [Xt] with respect to a rigid boundary will now be denoted as
[Xtcd] for constrained. We can now write:

{Xtcd} = [PHIn]{q} , (1)

where q is the modal displacement to be calculated later in the transient analysis.

3. Constraint Modes

The second type of motion due to the displacement and deflection of the boundary DOF's

(BDOF's) is analyzed as follows. The equation F = KX can be written in partitioned form such that

the elements of the matrices which pertain to internal DOF's can be segregated from the elements
which pertain to BDOF's as shown in equation (2), where I denotes internal DOF influence and B

denotes BDOF influence. Note that FI = 0 in equation (2) because this equation by definition is

written to analyze only the effects of movement and relative deflection of the BDOF's on the internal

DOF's (the effect of the internal forces are taken care of in the first type of motion).



therefore,

if we let

then

KBt KBR Xn FB FB '

[Kit] {Xt} +[Km] {Xn} = 0

{XI} = -[KII]-I[KIB] {XB} ,

- [Klt]-I[KtB] = [PHIc]

(2)

{Xt} = [PHIcl {XB} • (3)

To gain more insight into what PHIc is, we can let XB be an identity matrix. In this case, each
column of PHIc is a map of relative internal displacements (mode shape) resulting from a unit dis-

placement of one BDOF while fixing (constraining) all the other BDOF's. For this reason, we call
PHIc the constraint modes, and we will now refer to this type of Xt as Xlct. Rewriting equation (3)

with this new notation we get:

{Xlc, } = [eHlc] {XB } (4

Xlc t is the matrix of internal displacements due to the relative displacements of the BDOF's found in

xB.

4. Equations of Motion

The complete internal motion is found by combining the constrained and the constraint types
of motion.

{Xl} = {XIcd} + {XIct} (5)

Substituting equations (1) and (4) into equation (5) we get:

{Xt} = [Pnln]{q} +[PHIc]{XB} , (6)

and since

{XB} = {XB} , (7_

we can write:

3
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We now define

[ PHIjv PHIc ] = [TCB]0 1 (9)

where [TCB] is the CB transformation matrix.

The number of columns in PHliv is equal to the number of retained modes, and the number of

columns in PHIc is equal to the number of BDOF's. Therefore, the size of [TCB] is equal to the

number of retained modes plus the number of BDOF's. We will later see that the size of our reduced
model is this same size.

The equation of motion for a system with forced vibration and no damping (damping will be
taken care of later) is:

[M]X+[K]X = {F) (10)

If we write this equation in partitioned form with respect to internal and boundary DOF's, we can

get:

KBt KBB XB FB '
MBt MBB XB (11)

where 1 = interior DOF's and B = boundary DOF's. Mtt is a matrix of those mass matrix terms

which represent only internal DOF's. MBB is a matrix of those mass matrix terms which represent

only BDOF's. Mm and MBt have terms with a mixture of boundary and internal DOF influence. Kit,

Kin, KBt, and Ken are defined the same. By substituting equations (8) and (9) into equation (11) we

get,

FB •MBt MBB ] I KBt KBB (12)

To simplify and to make symmetric, we multiply through by [TCB] T and get, after several

steps and substitutions,

MBQ MBt_ }(B 0 KBB FB " (13)

where

MQB = [PHl_clr[Mtt] [PHIc] + [PHliv] T[MtB]

MBQ = [PHIc]T[MtiI[PHIN] +[MBt][PHIN]

w 2 = [PHltdr[Kn][PHIld (squared constrained system natural frequencies)

4



If we let

I MQB] = [MCB]MSQ MBB

and

w2 0 ] = [KCB] ,
0 KBB

then we can rewrite equation (13) to get the CB equation of motion:

{ }
(14j

B. Coupling

To couple systems together, we put the models (mass and stiffness matrices t into a common

coordinate system and then add the equations of motion.

As an example (which directly applies to the node problem), we will couple two subsystems
called rack (R) and node (N) into a new system called the payload (P) system. The_ we will couple

this payload to the shuttle (S) system to get the complete lift-off (LO) system. The R system
attaches to the N system, and the P system attaches to the S system at the node (f,_g. 2).

When CB reductions are done, the BDOF's must include all boundaries to be used in future

couplings. For example, the node attaches to the rack and to the shuttle. Therefore, the BDOF's for
the node include the node to rack (n/r) and node to shuttle (n/s) BDOF's.

Since the models of the R, N, and S systems are supplied in the CB format, we are given the

CB transformations [TCBR], [TCBN], and [TCBs], where

IXB r/n I I IXBr/n ' XB ,as XB ,'as

and

qs}XIS } = [TCBs]{ XBs/n "XB s/n

Note that n/s stands for node to shuttle coordinates and s/n stands for shuttle to node coordinates.

These TCB's, which convert from modal coordinates to discrete coordinates, were generated as

shown above during the initial R, N, and S CB reductions. To couple the R system to the N system,

we first write the equations of motion from equation (14) for the rack and then the node systems.

5
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Figure 2. Lift-off coupled system.

[MCB]R IXB r/n
(16a)

[MCB]N XB n/r

XB n/s

qN I) [TCB]T FBFB'ar I"as+ [KCB]N XB'ar I =
XB "as

(16b)

To couple the rack and node systems together, we need to convert them to a common coordinate

system which contains all coordinates found in the rack and node systems. Such a system, in this

case, is the
Jq tq]v

XB tin

tX_°'rl
XB "as

system. Since we are coupling the rack and node at the r/n boundary, we are

imposing the relation that XB r/. = XB mr. Therefore, we will convert to a

also contains all coordinates found in the rack and node systems.

qR t
qNl

XB dn

XB ,as

system, which

We can write:

XB r/n XB r/n XB "as

XB "as

} JqRIqN

=[TN]t XBr/n ]
XB "as

(17)



where [TR] and [TN] are the coordinate transformation matrices which convert from the new com-

mon (coupled) coordinate system to the rack and node systems, respectively. Unless a coordinate

rotation is involved, these transformations are generally made up of O's and l's. From equations

(17), we can solve for [TR] and [TN] which we will need later in this analysis to convert back to the

component system coordinates (R and N) from the common coupled system coordinates when
recovering component loads. In this example,

0100][1 0 0 0] and [TN]= 0 0 1 0 •
[TR] = 0 0 1 0 0 0 0 1

Substituting equation (17) into equations (16a) and (16b), we get equations (18) and (19).

qg = [TCB] T I FIR
[MCBIR[TR] i:IN + [KCBIR[TR] XB r/n {FB r/nJ' (18)

J_B rln

-n XB,,/,

I IIqR FIN

qN = [TCB]TN FB n/r • (19)

I ?IN + IKCBIN[TN] xB r/n / FB n/s
[MCB]N[TN] XB r/n XB n/s

J_B his

Now we will multiply equations (18) and (19) by [TR] T and [TN] T, respectiw,ly, to simplify.

[TR]r[MCB]R[TR]

qR

XB rln

XB nls

+ [TR]T[KCBIR[TR]

qR

qN

X B r/n

XB n/s

= [TRIT[TCBIT [FBtFlrlnR} , (20)

= J

[TN]T[MCB]N[TN]

_IR

XB r/n

XB n/s

I qR
+ [TN]T[KCB]N[TNI qN

I XB tinXB his

I )= [TNIT[TCB]TN FB n/r • (21 )

F B rids

Now, we can add equations (20) and (21) while letting

[TR]T[MCBIR[TR] + [TN]T[MCB]N[TN] = IMP] , (22a)

7



and

[TR]T[KCBIR[TR] + [TN]T[KCB]N[TN] = [KP] , (22b)

where MP and KP are the P mass and stiffness matrices. The result is the general coupled payload
equation of motion:

IMP] qN

I :?B..
X B n/s

qRqN

+ [KP] _ XBr/n

XB n/s

= [TR]TtTCB]TR [ FIR
IFBrln }

+ [TN]r[TCB]_ FB n/r • (23)

FB n/s

It is important to note that for shuttle payloads, there are generally no internal forces applied

to the rack or the node, so FiR = FIN = 0. After making the substitutions for [TR] T, [TCB]TR, [TN] r,
and [TCB]T N, the right hand side of equation (23) simplifies as follows:

1

0

0

0

0

°I1

0

o]lo I
PHITc IR FB r/n

0

1
+

0

0

0 0 0 = 0
0 0 PHIT 0 FB nlr { FB rln }
1 0 PHITc IN FB n/s
0 1 0

-4-

0

0

{FB n/_}

{FB n/s }
°'(°10 = 0

{FB r/n } + {Fn nlr } [ 0 "

{ FB n/s } {FB n/s }

The last step in the simplification is due to the fact that the sum of the forces at the coupled boundary
between the rack and the node are zero, so FB ,er+FB r/n = 0. This assumes that there are no

externally applied forces at the boundary. Using the above simplifications, equation (23) becomes
equation (24), the final payload equation of motion.

[MP]

XB his

+ [KP]

qR

qN
Xo r/n

XB n/s

0/o t
0

IFBn/s]

(24)

To further illustrate that this method couples by simply adding at common BDOF's, we can

expand equation (22a) to get equation (25) and then multiply to get equation (26).

1

0

0

0

0

0E,
1 MBQ MBB R
0

000
1000]+1000010 010

001

[ 1[°'°°]1 MQB 0 0 1 0 = [MP]

MBQ MBB JN [ 0 0 0 1 (25)



I'O0  ,rl[O0 01I 0
MBQ r 0 MBBr_ 0 BQn MBBnJJ MBQr MBQn

MQBn = [MP] .

(MBBr+MBBn)

(26:

Expanding equation (22b) would show the stiffness matrices coupling in the same way.

We will next couple the payload to the shuttle. To simplify the problem, we will do a CB

reduction as before on the new payload system, saving only the boundaries needed for coupling;

those common to the payload and shuttle systems. The CB reduction, performed as before, gives us
a new CB transformation matrix [TCB]p which satisfies the following relations.

[ PHliv[TCB]p = 0 Jq ] I 1qN = [TCB]p qP .PHIc , and XB r/n XB n/s

1 p I XB n/s

(27

Again, we can get the CB mass and stiffness matrices.

[MCB] e = [TCB]Tp[MP] [TCB]t, , (28a_

[KCBIp = [TCBI_[KP][TCB]e . (28b)

The new CB equation of motion for the payload is:

XBn/s I XBn/s FBn/s "
(29)

The CB equation of motion for the shuttle is derived the same way and is:

XB s/n XB sin FB sin "
(3_i)

Since there are externally applied forces on the shuttle internal DOF's, the Ft term does not go to

zero as for the payload system.

To couple the P and the S systems into the LO system, we must rearrange and add as we did

for the rack and node subsystems. We can derive the coordinate transformation matrices [TP] for

the payload, and [TS] for the shuttle from equations (31). The LO mass and stiffne:¢s matrices
([MLO] and [KLO]) can then be found by using equations (32a) and (32b).

XB his XB his XB his

(3_)
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[TP] T [MCB]p [TP] + [TS] T [MCB]s [TS] = [MLO] , (32a)

and

[ TP ] T [KCB]p [TP ] + [ TS] r [KCB]s [TS] = [KLO] (32b)

As before for the payload system, we substitute equations (31) into equations (29) and (30). We

multiply these modified versions of equations (29) and (30) through by [TP] r and [TS] r,

respectively, and then add them together. Substituting equations (32) into this new equation we get
a coupled LO equation of motion.

[MLO] ;(Is + [KLO] qs = [TSIT[TCBlrs FB sip FB "us
XB ,Us XB ,Us

(33)

Note that the payload attaches to the shuttle at the node (fig. 2). This means that FB ,,/s is the same

as FB p/s. Since the payload and shuttle are coupled at the common boundary, then FB s/p+ FB p/s = 0

(again assuming no externally applied boundary forces), and therefore FB s/p+FB ,us = 0. Using this

relationship after substituting all of the transformation matrices into equation (33) and then simplify-
ing, we get equation (34), the complete LO equation of motion.

I (q l / sl•[MLO] _ls + [KLO] qs = [TS] T [TCB] z

J_o ,Us XB "us

(34)

This is the basic equation used in the transient response analysis (see below) to get the modal
responses (qs) from the forcing function (Its).

C. Transient Response

Equation (35), the eigenvalue problem, is solved for the eigenvalues (wLo 2 where wLo are

the system free-free natural frequencies), and the eigenvectors (PHILo) which are the system mode
shapes.

([KLo] - [WLO 2] [MLo]) [PHILo] = 0 , (35)

where

qs

XB n/s

= [PHILo] {qLO } (36)

Since the mode shapes ([PHILo]) are just relative amplitudes, they can be multiplied by a constant

and still retain the same shape. We can normalize the mode shapes by picking constants such that

10



[PHILo] r [MLo] [PHILo] = [/] • (37

When equation (37) is satisfied, then so is equation (38).

[PHILo] T [KLo] [PHILo] = [WLO 2] • (38_

Now equation (36) can be substituted into equation (34) and, after multiplying through by

[PHILo] T to simplify, we can use equations (37) and (38) to get the normalized equation of motion

with no damping.

[I] {_LO}+[wLO2] {qLO} =[PHILo]T[Ts]T[TCB]T { Fts }0 "
(39,

At this time it is convenient to take damping into account. Damping is assumed to be propor-

tional damping [2] as defined by equation (40).

[D] = [2zw] , (413)

where z is the damping ratio, which is assumed for lift-off to be 1 percent of critical damping for

modes below 10 Hz and 2 percent of critical damping for modes above 10 Hz. For landing analysis, z

is assumed to be 1 percent of critical damping for all modes. Since damping force is proportional to

velocity, our final equation of motion is then:

| Fls I
[I] {qLO} + [2ZWLO] {_¢LO}+[WLO 2] {qLO} = [PHILo]T[Ts]T[TcB]Ts { }

0 r "I
(41)

Note that we now know everything in this equation except the q's and the external forces on

the shuttle applied to the internal DOF's ({F/s}). The forces are supplied by JSC in the form of

forcing functions which are predictions of a certain shuttle environment during lift-off or landing. A

forcing function is a matrix where each column represents specific forces on specifit: shuttle DOF's _,t
one instant of time. The number of columns then is the number of time increments t_ be studied. Lift-

off is usually run for about 10.5 s, and landing for about 2 s. The time step used can vary, but 0.005 s

is typical.

By virtue of the modal analysis, equation (41) is a set of n linearly independt:nt differential

equations with n unknowns (n = size of the model). We can now solve for the q's for the first colum_
(time step) of the forcing function. The results of this solution are used as the initial conditions for
the solution of the next time step. The solutions keep "feeding" each other like this until all forcing

function columns are used. This gives us the values of q for all time steps during an event such as

lift-off. The q's represent the modal displacement, velocity, and acceleration of the system.

D. Recovering System Response From Modal Response

Now that we have solved equation (41) for the modal displacement and acceleration

responses of the system (qs), we need to determine what this means with respect to specific inter-

face forces between subsystems and net center-of-gravity (CG) accelerations of subsystems. The

hybrid modal acceleration method is frequently used to get interface forces and CG accelerations

when the system is either determinate (six BDOF's) or slightly indeterminate (seven BDOF's). Ir,

11



someinstances,even sevenBDOF's requireanothermethodcalled the accelerationmethod,which
is outsidethe scopeof this report.Thefollowing makesuseof thehybrid modal accelerationmethod.

The rigid body displacements (first six rows of q) are set equal to/ero which forces the

coordinate reference point to be the CG of the shuttle. Otherwise, the large movement of the entire

shuttle system would be included in the displacement results. The modal displacements and accel-

erations are then transformed back to the point of interest, as shown below, using the transformation
equations derived above and repeated here for clarity.

iq }I qsXB n/s

= [PHILo] {qLO } . (36)

qP = [TP] qs qs = [TS] qs ,
XB n/s XB hiS ' XB n/s XB his

(31)

F PHIN[TCB]p = |
L 0

qR
PHIc ] , and qJv

I Jp i XB r/n
I XB hiS

{ qP }= [TCB]p XB n/s " (27)

qR qN qR

{I qN"IXB rln XB rln XB his
XB n/s XB n/s

(17)

XtR }XB r/n
and

X!

lqN I
I [TCBN] XB nlr

N

XB n/r J = XB tXB n/s n/s
(15)

and

{ Xts } = [TCBs]{ qs }XB sin XB sin "

These equations can be used to find the response of any of the subsystems. For example, if

we want the response of the rack during lift-off, we back into it from the system modal response as
follows:

qs = [PHlt.o] {qt.o}
I XB n/s

qP = [TP] qs ,

XB n/s XB n/s

12



{qN = [TCBp] qP
XB his XB his

XB r/n

XB r/n XB r/n '

XB his

,

Therefore, the modal response of the rack is:

qR }=[TRI[TCBe][TP][PHILo]{q,o},XB r/n

and the rack discrete response is:

XtR }= [TCBR][TR][TCBp][TP][PHILo] {qLo} •
XB r/n

Similarly, the modal response for the node is:

f q" t
" XB n/, = [TN][TCBp][TP][PHILo] {qLo} ,

I x,,,/, /

and the node discrete response is:

[ XIN I [TCBN][TN][TCBp]tTPI[PHILol{qLo}

I XB nlr =XB his J

(42a)

(42b)

(43a)

(43b)

2

i

E. Recovering Loads Using Loads Transformation Matrices

Now that we have the response, we need to convert this information into loads through the
use of loads transformation matrices (LTM's). The LTM's for finding interface forces (IFF's) and

center-of-gravity accelerations (CGA's) are derived in the following.

17



1. Interface Forces

IFF's are simply the boundary forces (FB) between two subsystems. Recalling equation
(13):

+ F8 "
(13)

There are no applied internal forces in the rack or node (FI = 0) and since

[TCB]r=[ PHIN 0 ]PHIc I '

equation (13) simplifies to:

I' °ll I Io/M.QM.. I :_. 0 K,, q, = F. (44)

from which we see that the boundary forces (same as IFF's) are:

lLIFF = [FB] = [MBQ MBB] XI_ (45)

[MBQ MBB] is sometimes called LTMA, the acceleration LTM, and [0 KBB] is called LTMD, the
displacement LTM. Rewriting equation (45) we get equation (46):

I:¢./÷ (46)

Substituting equation (42a) from the example above into equation (46), we get equation (47) which

gives the interface forces between the rack and the node:

LIFF R = [LTMA ]R[TR]ITCB?][TP][PHILo] {qLo}

+ [LTMDIR[TR] [TCBp][ Tel [PHILo] {qLO } (47)

2. Net CGA's

A net CGA is the average acceleration of a subsystem CG assuming the subsystem to be a

rigid body. This should not be confused with the acceleration of a point at the CG. We need to know

the forces at the CG of the subsystems. Since we now know Fn, the forces at the boundary

(equation (45)), we need to transform them to the CG. To do this we solve for the rigid body trans-
formation (RBT) such that:

{XB} = [RBT] {XcG} (48)

14



Since [RBT] is orthogonal,then [RBT]r = [RBT] -1, and it follows that

{Xc6} = [RBT] T {XB} , (49)

and that

[FcG] = [RBT] r [FB] (50)

To convert equation (45) to the CG coordinate system, we multiply through by [RBT] T and get:

[RBT]T[FB] = [RBT] r [MBQ MoB] XB
(5_)

Since converting to the CG coordinate system is an RBT, all coordinates retain the same relative

position. Therefore, for CGA's we assume a rigid model which means there are no forces due to
deflections and so:

[RBT] T [0 KBB] = 0 . (52)

Substituting equations (50) and (52) into equation (51) we get:

Io/[FcG] = [RBT] T [MBQ MBB] J(B (53)

[FcG] = [McG] {J(CG} , (51.)

Since

then

{J(CG} = [McG] -1 [FcG] •

Substituting equation (53) into equation (55) we get:

/o/{XcG} = [McG] -1 [RBT]T[MBQ MBB] XB "

We can get [Mc6] by performing the transformation:

[MEG] = [RBT]T[MBB] [RBT] .

Substituting equation (57) into equation (56) we get:

Io}{XcG} = ([RBTjr[M_B][RBT])-I[RBT]T[MBQ MBB] XB "

(55)

(56)

(57)

(58)

15



If we let

[ACG] = ([RB 7] T[MBB ] [R B T] )- 1[RB 7"]T[M 8 Q MBB ]",

then from equation (58),

(59)

{Xc6} = [ACG] J_n (60)

Substituting equation (42a), from the example above, into equation (60) we get equation (61) which
gives the CGA's for the rack during lift-off.

{XCG }R = [A CGIR[TR] [TCBp] [TPI [PHILo] {/_LO } (6 l)

IlL SUMMARY

Coupled loads analyses require a lot of bookkeeping techniques. First the models are coupled

while creating a trail of transformation equations in order to later back out to the subsystem level.

The equations of motion are then written for the coupled system. Next, the transient analysis is

performed by applying the forcing functions to the equations of motion to get the system displace-
ments and accelerations during the dynamic event. Finally, the system transient results are used

along with the transformation equations to back into specific subsystem responses. At this time, it is

important to point out that we can calculate many more different kinds of component responses other
than interface forces and CGA's. These responses were needed for the SSRNMO and therefore

were used in this report. The topic of a future report might be the usage of LTM's to recover other
types of responses.
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